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Abstract—Sensor networks, in addition to stock tickers, net-
work event logs, scientific simulations, credit card transactional
flows, and surveillance video cameras, output a continuous flow
of data, called a data stream. Mining data from a network
of sensors provides insight into the health and reliability of
a system. This process is known as data stream mining. This
paper examines the issues associated with mining these sensor
data streams and the challenges related to storing some or all of
this data. This paper will identify opportunities for futur e work
in mining and storage of data streams.

I. I NTRODUCTION

Reliability analysis is the study of the ability of a compo-
nent or system to operate under given conditions for a specific
period of time according to some performance requirement.
It involves determining the possible points of failure within
a system and identifying those components which contribute
most towards the system’s unreliability. The field of system
reliability encompasses multiple key research areas including
software reliability (the measure of the quality of a software
design), reliability prediction (the forecast of the failure rate
of a system) and failure analysis (the determination of the
cause and consequence of a system failure). The failure rateor
failure ratio, according to [1], is the proportion of the number
of failures to a given unit of measure, such as failures per
unit of time, failures per number of transactions, or failures
per number of revolutions. The use of the term “reliability
analysis” henceforth in this paper will pertain only to failure
analysis and/or reliability prediction.

Automated reliability analysis has been made possible
by the availability of cost effective sensor technology and
increased computing performance. Sensors produce a contin-
uous feed of measurements, called a data stream, which can
be analyzed to determine the state of the component being
measured and the presence of faults. The process of inferring
knowledge from a continuous stream of data is known as data
stream mining.

Over the years, data stream mining has been the focus of
many research papers and is used in many domains including
fraud detection [2], medical monitoring [3] and stock market
analysis [4]. This paper examines the challenges associated
with mining and storing data streams and surveys research
efforts which address some of these issues. By exploring these
issues and possible solutions, we hope to highlight additional
research opportunities in this area.

This paper is arranged as follows. Section II will provide
a brief background into data streams for reliability analysis.
Issues in data stream mining and data stream management will
be discussed in sections III-A and III-B respectively. Finally,
concluding remarks are made in Section IV.

II. BACKGROUND

Data stream mining techniques can be used in several
ways in reliability analysis, such as in a Machine Condition
Monitoring (MCM) system to determine the state and the
reliability of the machine being monitored. MCM systems
enable real time health assessment, prognostics, and advisory
generation by continuously recording and processing streams
of measurements taken from sensors attached to components
of the machine being monitored [5]. These systems have
been developed to mitigate maintenance costs and improve
the lifetime and reliability of equipment. To measure various
aspects of the system, different types of sensors such as
accelerometers for measuring vibration data, tachometersfor
measuring rotational velocity, oil sensors for measuring oil
level and quality, pressure sensors, and temperature sensors
are often used. These sensors produce a stream of measure-
ments — each at their own pace — which can be mined to
determine the existence of faults, the cause of faults, and the
probability of failure.

Another way in which data stream mining is used in
reliability analysis is in the mining of changes in the sensor
data. Mining changes in sensor data may provide useful
information regarding the state of that sensor and reduce
conflicts in knowledge fusion systems. Knowledge fusion
systems attempt to integrate data from multiple sensors to
deduce the state of a component in a system or of the entire
system itself.

Another important aspect of reliability analysis for which
data stream mining has proved itself useful is survivability.
The survivability of a system is its ability to operate efficiently
in the presence of catastrophic failures [6]. Survival analysis
is used to represent the time to an event, such as the failure
time of a mechanical system.

Data stream mining encompasses techniques which utilize
information gathered from past cases to label incoming data
for prediction or classification of faults, and those which
identify faults based on their similarity to a previous case
using clustering. In the following section, we review issues
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plaguing data stream mining and management as it relates to
reliability analysis.

III. R ELATED WORK

A. Data Stream Mining

1) Concept drifts and model updates:Knowing when to
update a mining model is one of the challenges in data stream
mining. A mining model could be updated periodically, in-
crementally (with every change in data) or reactively (rebuild
the model only when it no longer suits the data) [7]. Frequent
updates of the mining model wastes resources on insignificant
changes while infrequent updates risk model inaccuracy and
the resulting system degradation [7].

To complicate this issue, the underlying concepts in a data
streams have a tendency to change over time. Mining concept
drifting data streams has been the focus of many articles,
including [8], [9], [10], and [11]. Algorithms adapted to
concept drifting streams include incremental decision trees
such as the concept-adapting very fast decision tree [9] and
ensemble classifiers such as the streaming ensemble algorithm
(SEA) [9].

Adjusting the mining model to adapt to changes in the
state of the system being monitored must also be considered.
Inaccessible machines, for example, may have to operate with
non-critical faults until a scheduled maintenance date when
the system state would revert to normal. If the classifier was
trained based on data generated while the system was in an
abnormal state, a recurring fault introduced after the system
has been returned to normal may not be correctly classified
by the mining model since the classifier may now consider
the existence of that fault as a part of the normal operation
of the system.

2) Selecting an appropriate mining method:In general,
data stream mining approaches generate a model from his-
torical records and use this model to classify new instances
in the data stream. Such a method permits only a single
pass through the training data since a second scan of the
data is infeasible due to the high rate of incoming data,
and will need to incorporate new data from the stream as
appropriate. Some data mining techniques such as decision
trees do not adapt well to handle continuous data [12], but
others such as ensemble classifiers ( [13], [14]), one-versus-
all classifiers [9], and k-means clustering [15] have been
applied successfully to data stream mining.

The possibility of redundancies within ensemble classifiers
and the inability of single components of incremental classi-
fiers to be updated independently when a concept has changed
are challenges which must be addressed. Redundancies within
ensemble classifiers can be avoided using pruning techniques
such as instance based pruning [13] to identify the subset of
classifiers that produce the same results as the entire ensem-
ble. The challenge of determining which classifier within an
ensemble is to be updated is discussed in [9] but remains an
open issue.

3) Model overfitting: Model overfitting, which occurs
when a mining model is too specific or is too sensitive to

the training dataset that was used to generate that model, is
more likely to occur in streaming environments. This may
be because of a lack of training data and possible biases in
the training dataset resulting from the data originating from a
single source [8]. Traditional data mining techniques suchas
cross validation are not well suited for data streams because
they require more than a single pass over the training data.
The framework proposed by Wang et. al in [8] addresses the
overfitting problem by harnessing concept drifting patterns.
Efficient feature selection algorithms such as [16] will also
reduce the risk of overfitting.

4) Cost sensitive learning:In reliability analysis, the cost
of a false positive (or false alarm) is typically not equal
to the cost of a false negative. Inaccessible systems, for
example, have a low tolerance to false alarms because of the
expenses associated with retrieving the equipment for repair.
One approach to cost sensitive learning from data streams
involved weighting classifiers within an ensemble based on
their mean square error [13].

5) Imbalanced datasets in classification problems:In re-
liability analysis, it is typical for the dataset to be imbal-
anced, meaning that the ratio of positive (faulty) instances
to negative (no fault) instances is skewed in favor of the
negative instances. Learning algorithms such as decision trees
have been known to perform poorly on imbalanced dataset
problems because of their tendency to classify all instances
as negative to maximize accuracy. [9] investigated the use of
a novel under-sampling scheme for their ensemble classifier
which restricts each negative instance in the training set from
being used in the models of more than two classifiers within
the ensemble. This scheme, along with techniques such as
[17] and [18], could address this issue.

6) Missing or incomplete data:Missing or incomplete data
is not uncommon in sensor networks, so any stream mining
algorithm or framework should make provisions for handling
missing, delayed or out-of-sequence data. [19] proposed a
framework based on a compressed sensing (CS) theory [20]
for detecting anomalies in incomplete data by either sampling
a subset of the sensors or of the number of frames in a
temporal stream. Three techniques for substituting valuesfor
missing data points, namely Bayesian multiple imputation,
k Nearest Neighbour imputation and Mean imputation, were
investigated by [21] as solutions to the missing data problem.

7) Modeling changes in mining results:Observing tempo-
ral changes in data streams may provide useful information
about the system. By sensing the fluctuation in the data stream
from a particular sensor, for example, it may be possible to
identify that a sensor is failing based on increasing variances
as time progresses. Algorithms such asMAIDS[22] have been
designed for this purpose.

8) Data preprocessing:The design of a lightweight pre-
processing technique which can guarantee the quality of the
mining results remains as an open problem in data stream
mining [23].

9) Formalizing data stream computing:Formalizing data
stream mining within a theory of stream computation enables
the design and development of mathematically sound stream



mining algorithms [24]. A formalization of data streams in
signal processing traditionally [25] uses Z-transforms — a
discrete version of Laplace transforms. An approach geared
to the composition, or the gluing together, of software compo-
nents was more recently proposed in [26]. Using coinductive
stream calculus to define signal flow graphs, this approach
may make integration of learners into a stream processing
environment easier to implement.

B. Data Stream Management

1) Centralized vs. decentralized processing:Processing
live data may be either centralized or distributed (i.e. permit-
ting some computation to take place at the individual sensor
site). With centralized processing, the amount of bandwidth
required to transmit all the data continuously (and in real
time, in most cases) to a central storage system for immediate
querying must be considered. With a distributed approach,
each sensor node has the capability of processing its own
data and then transmitting the results to a centralized location
for further analysis. In distributed sensor data management,
it is important to consider the possibility of data loss during
transmission as well as how processing and storing its own
data will affect the power consumption at a node. These
concerns can create a bottleneck for the performance of the
entire system.

2) Data aging: Another challenge to data stream manage-
ment is the timely identification of stale data. An optimal data
aging strategy would need to determine which data in the
training set is no longer relevant, such as those pertainingto
previous concepts in a concept drifting stream. As explained
in [13], discarding data after a predetermined length of time
may lead to some interesting problems. If the selected lifespan
L is large, then the possibility of having outdated instances
within the training dataset is high; ifL is small, the risk of
overfitting is greater since there may be insufficient instances
in the training dataset. The aging strategy presented in [13]
provides a workaround by considering the class distribution in
addition to the arrival time when selecting the data lifespan.

3) Storage space restrictions:The continuous flow of a
data stream demands an unlimited storage system to hold
unprocessed streaming data and/or the results of the mining
operation. In most cases, there is minimal storage at sensor
nodes, so data storage may be centralized. Novel stream man-
agement systems (e.g. StonesDB [27], DIMENSIONS [28],
TinyDB, Cougar and Diffusion) were designed to provide
efficient storage solutions for data streams.

4) Limited availability of resources:One of the biggest
stream management issues relates to the lack of available
resources including storage space, processing power, net-
work connectivity, and energy. In some domains, including
ocean systems, available network connectivity may be limited,
spotty, and incapable of sustaining high data transfer rates.
More reliable network connections tend to be difficult to
acquire or expensive, and may not be feasible offshore in the
case of oceanic systems. An ideal solution would therefore
need to minimize communication overhead.

Because of the constant transmission of data, the lifetime
of the battery in a battery-operated sensor is greatly reduced.
A novel approach to resolving this issue in an ocean turbine is
to wire the sensors in to the turbine’s battery pack which can
be recharged by the flow of ocean currents. Other solutions
attempt to conserve energy consumption by reducing the
quantity of data to be transferred or by transmitting the data
in batches. By reducing the volume of data, the amount of
time the sensor spends transmitting data is also decreased.
The volume of a data stream can be reduced via well
known summarization methods: aggregation, sampling, load
shedding and approximation.

Sampling techniques in general involve altering the number
of data points to achieve desired results, and are typicallyused
in class imbalance problems to alter the class distributions.
Undersampling techniques, which involve selecting a subset
of the negative (not faulty) instances from the original data
stream, reduces the size of the data stream by ignoring or
discarding some of the original data points. In load shedding,
a sequence of items within the data stream are discarded.
While it has been applied successfully to data streams, it
presents the same problems as sampling [23]. Aggregation
employs statistical measures such as average, maximum,
minimum, etc. while approximation techniques ( [29], [30],
[31]) involve replacing the original data stream with an
approximated signal (with error bounds) which is tailored for
the application domain [30].

5) Handling the continuous flow of data streams:Pas-
sive systems such as traditional database systems typically
have high latencies due to the cost of a database storage
operation and constant polling for data [4]. Active stream
processing engines (SPE) which utilize specialized primitives
and constructs like time sliding windows to perform on-the-
fly processing of streaming data but store data only when
necessary are popular solutions to this problem. The querying
language used within an SPE typically resembles SQL for
databases, and often includes constructs permitting joinsand
cross querying of multiple streams. StreamSQL is one of the
most popular variants of SQL and was specifically designed
to express queries on continuous data streams.

Another issue pertaining to the continuous flow of data
streams is the inconsistency in data transfer rates. Algorithm
output granularity (AOG) is a resource-aware data analysis
approach capable of handling very high data rates which per-
forms data analysis locally on a resource constrained device.
AOG works by performing mining operations, followed by
adapting to the data stream rates and resource availability,
and then by merging knowledge structures when the memory
is filled past a certain capacity [23].

6) Merging distributed streams:Typical monitoring sys-
tems consist of sensors installed in different locations on
the machine or system being monitored. The resulting data
streams must be merged, sometimes in real-time, to allow
an overall system analysis. Associated with merging of data
streams is the topic of data fusion which is surveyed in these
proceedings [32]. [33] discusses a stream merging strategy



based on a common key.

IV. CONCLUSION

Data stream mining refers to the techniques for inferring
knowledge from a continuous stream of data. This paper
reviewed fundamental issues and challenges plaguing data
stream mining and management for reliability analysis, as
well as research efforts invested in addressing these problems.
While a lot of work has been done in this area, there is
room for additional research as some of the issues mentioned
in this paper are yet to be addressed. These open issues
were: the need for lightweight data stream preprocessing
techniques, the lack of an approach to determine which single
component within an ensemble classifier is to be updated, and
the problem of efficiently readjusting the data mining model
within a system whose state has been returned to normal after
operating in the presence of a fault for some time.
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